
C H I P S & C I R C U I T S

By creating appropriate digital data, you can test individual

components before the entire system is ready.

Shawn Beus, Hewlett-Packard

Functional testing of compo-
nents and subsystems is an
integral part of the develop-

ment process. If you begin testing
when only part of the system is
ready, you can uncover and solve
problems earlier and be further
along in the debugging process
when all of the system hardware
finally comes together. Once you
have a functioning digital system,
you can stimulate it with various
data sequences to determine
whether it is performing as
designed under as many condi-
tions as possible. You might want
to simulate data from I/O devices
to see if the system processes it
correctly, or introduce faulty
sequences to see how it performs
under stress conditions. For any
type of functional test, you need
tools to input digital stimuli into
the system under test and to mea-

sure its response. Using the right
tools in the right way will speed
the development process and
result in a more reliable system.

Before you set up a functional
test, you need to assess the test
requirements for your system and
then choose the appropriate tools
(Figure 1). First, you must deter-
mine what basic test capabilities
are needed, such as the number of
stimulus channels, the required
stimulus clock speed, the voltage
standard of the input, and the
length of the test sequence. You
may test the system at a single
frequency or at different frequen-
cies. The test sequence may simu-
late a single serial data stream or
it may stimulate several buses
simultaneously.

Another important considera-
tion is how to view and/or mea-
sure the system’s response to the

test sequence. For simple tests,
you can design the test to output
its results to a monitor or an out-
put port. If you are testing a single
chip such as a digital-to-analog
converter, you can connect an
oscilloscope to the output.

However, to see the full
response of a digital system to test
sequences, you have to look simul-
taneously at a number of data
streams in the system, and a logic
analyzer state/timing machine is
the most appropriate tool for this.
A logic analyzer also can help you
trace the events leading to an
error condition.

Complex Tests Require

Flexible Tools

Other considerations are the
amount of flexibility needed to
perform the tests and the time and

Separately Testing Subsystems before the Entire
System Exists

15Volume 4 • Issue 3 • 1999

Signal
Levels?

Number of
Stimulus

Channels?

Test
Sequence?

Signal
Levels?

Number of
Acquisition
Channels?

Triggering?

Analysis?

Stimulus
Clock Speed?

Acquisition
Speed?

DUT

Figure 1. To functionally test a device, you must know what signals the rest of the system provides and the response the

device is supposed to produce.

16 Volume 4 • Issue 3 • 1999

C H I P S & C I R C U I T S C O N T I N U E D

budget constraints. If you have
only one simple test sequence to
perform, you may consider devel-
oping your own state machine to
provide the test stimulus. This
approach can take anywhere from
a week to several months, depend-
ing on the complexity of the state
machine. The largest benefit of
this method is the low cost of the
materials, but this low cost is
often offset by the expense of
development. This approach
results in a stimulus tool suited
only for a single test. Any modifi-
cations to this custom tool would
require additional development
time, and a new stimulus tool
would need to be developed for
each new project. If the required
test sequence is complex or if a
flexible stimulus tool is required,
the true cost of a custom state
machine would be astronomical.

Fortunately, there is a solution
to this dilemma. A general-pur-

pose pattern generator provides
more flexibility for testing a digital
circuit. The initial cost of a pattern
generator may be higher than the
cost of developing a state
machine, but the savings in devel-
opment time compensates for this
cost for all but the simplest tests.
A few hours are required to
become familiar with the pattern
generator, but many hours are
saved because the tool allows test
sequences to be easily developed
and modified. Furthermore, once
purchased and learned, it can be
used over and over again on new
projects with no additional cost.

After selecting appropriate tools,
you need to determine how to con-
nect them to your system. Early in
the design process, you can design
connectors into the system specifi-
cally for use by the stimulus tool.
This approach greatly reduces the
chance of misconnecting a signal
or having signals become discon-

nected during testing. If this is not
possible, the stimulus tool can be
connected through various pins
and connectors that are already
part of the system.

If a logic analyzer will be used to
capture the system’s response to
the test sequences, you also need
to plan for connecting it to your
system. If the system contains a
microprocessor, analysis probes
are available for many standard
microprocessor families. Analysis
probes often include inverse
assembly software that decodes
the address, data, and status lines
into assembly language for easy
understanding of the response. If
you need to capture bus activity to
evaluate the response, analysis
probes are also available for stan-
dard buses. If the system contains
a proprietary bus or chip, a con-
nector or general-purpose probe is
required to access the necessary
signals (Figure 2).

Setting Up the Test Sequence

The next step in planning a func-
tional test is to determine how to
set up the required test sequence
in the pattern generator. The user
interface of the pattern generator
normally allows you either to gen-
erate standard test sequences
such as “walking 1s” or random
numbers, or to enter a test
sequence one line at a time. Writ-
ing and entering test sequence
data by hand is time-consuming
and tedious, so it is preferable to
automate this process.

Simulation tools, which are
used to test a circuit design before
actual hardware testing, are one

Figure 2. Connecting many signals to or from the DUT is often difficult unless

you either plan ahead by placing some connectors on the DUT or use a special

attachment device.

17Volume 4 • Issue 3 • 1999

he HP 16700A logic analysis
system and the HP 1660EP

series of benchtop logic ana-
lyzers offer stimulus/response
functionality in a single instru-
ment. The HP 16700A, which can
be configured with both pattern
generator and logic analysis
cards, provides one integrated
system for applying stimulus to
the system under test and for
measuring the system’s response.
The pattern generator can output
a test sequence at speeds up to
100 MHz across 200 channels or
at speeds up to 200 MHz across
100 channels. It supports ECL,
TTL, 3.3-V, and CMOS voltage
levels and has 256 Kb of memory
per channel to hold test data.
The pattern generator outputs
can also be set to tri-state if the
input channels need to be driven
by other devices. The various
state/timing cards for the
HP 16700A allow you to capture

T

Create Stimulus and Analyze Response in a Single

Instrument

the response of your digital sys-
tem across 340 channels. And
with trace memory depths from
8 Kb to 2 Mb per channel, you can
choose the length of the response
trace to capture.

The HP 1660EP series of bench-
top logic analyzers offer similar
functionality in set configurations
at lower cost. This series provides
an integrated pattern generator that
can output a test sequence at speeds
up to 100 MHz across 34 channels
or at speeds up to 200 MHz across
16 channels. For example, the
HP 1663EP has a 32-channel pattern
generator for stimulus and a
32-channel state/timing machine for
capturing system response.

For additional information on
products mentioned in this article,
check 3 on the reply card, or visit
http://www.hp.com/info/insight3.

source of test sequences. Most EDA
tools allow routing test sequences
to an ASCII file at various points in
the circuit. In the EDA tool, you can
save the test sequence at the point
where the pattern generator is con-
nected to the system, add some
setup information at the beginning
of the file, and then load this
sequence into the pattern generator.

To simulate a working system
component with the pattern genera-
tor, you can capture the output of
this component with a logic analyz-
er state machine and load the cap-
tured sequence directly into the pat-
tern generator. You can modify this
test sequence manually to create
variations on the original sequence.
Variations that introduce a few
errors are useful to show how the
rest of the system responds to
adverse conditions. If the compo-
nent being simulated isn’t working
properly, you can correct its output
before loading it into the pattern
generator and continue developing
the rest of the system while the
faulty part is being fixed.

Another method for obtaining a
test sequence is to write a simple
computer program to create an
ASCII file that can be loaded into
the pattern generator. A program
can be modified easily and produces
long test sequences much faster
than they can be entered by hand.

Synchronizing the Clock

Once the test sequence has been
created and entered into the pattern
generator, then synchronization and
clocking must be considered. For
certain applications you may need
to synchronize the start of the test

sequence with events occurring in
the system under test. For example,
you may want to simulate an I/O
device with a pattern generator and
need to start the test sequence
when the system is ready to read
from the device. In this case, you
can connect the read signal to the
wait inputs of the pattern generator
and have the pattern generator look
for a read before starting the test
sequence. If you want the pattern
generator to respond to a series of
system reads, you can set up multi-
ple data sequences with a wait

before each one. The pattern gener-
ator will respond to each read with
the corresponding data sequence
and then wait for the next read.

If the test must wait on system
events too complex for the pattern
generator to recognize, you can set
up a logic analyzer to trigger on the
event that signals the start of the test
sequence. To simulate a memory-
mapped I/O device, set up the logic
analyzer to trigger on a read from
that device’s address and then have
it start the pattern generator.

Clocking is another issue in

18 Volume 4 • Issue 3 • 1999

C H I P S & C I R C U I T S C O N T I N U E D

designing a functional test. Sever-
al options are possible: the clock
in the pattern generator, the clock
from the system under test, and an
external signal generator. The pat-
tern generator’s internal clock pro-
vides an easy way to clock the
whole target system. It can be set
to a variety of periods and can be
delayed with respect to the data.
For example, you may want to
verify that the lines to the memory
subsystem are routed correctly
even when the system processor
is not yet available. You can set up
the pattern generator to write data
to the memory while using its
internal clock to run the system.
Then you can use the pattern gen-
erator to send control signals to
read the same values back from
memory while a logic analyzer
captures the values. If the corre-
sponding memory values don’t
match, the stimulus and response
data can be compared to identify
which board traces are faulty.

For some test situations you
may want to use a clock external
to the pattern generator, either
because you need more precise

control over the clock or because
you want to use the clock of the
system under test. The pattern
generator will run on an external
clock, but there is some time
delay from clock in to data out.
This delay is due to the propaga-
tion time as the clock signal trav-
els up the pattern generator cables
and the data travels back down. If
you are using a signal generator to
provide the clock signal, you can
use the delayed version of the pat-
tern generator clock to clock the
test sequence into your system. If
you are using the system clock to
drive the test sequence, you need
to take into account the propaga-
tion delay from clock in to data
out. You may want to use a logic
analyzer timing machine to verify
that the pattern generator outputs
are timed correctly with respect to
the system clock edges.

Many scenarios are possible
using a pattern generator to run a
test sequence while a logic analyz-
er state machine captures the
response (Figure 3). If you just
received first silicon of a custom
ASIC and want to verify its func-
tionality, you can set up the pat-
tern generator to drive the input
lines to the ASIC while a logic
analyzer captures the response on
the output lines.

In another case, you can simu-
late a video image to test whether
a video processing system handles
it correctly. You can load the pat-
tern generator with the image and
set up the logic analyzer to trigger
immediately to capture the
processed image. This test could
be repeated multiple times and the
various responses compared to
determine how much variation
there is in the image processing
system’s output.

Repeat Specific Sequences to

Track Down Intermittent

Errors

Sometimes, an anomaly shows up
intermittently when a test
sequence is performed. In this
case, a pattern generator can be
set up to repeat a test sequence
continuously while a logic analyz-
er is set up to trigger on the error
condition. For intermittent errors
in a digital communication system,
you can set up the pattern genera-
tor to continuously supply test
data to the transmitting device
and set up the logic analyzer to
monitor for errors at the output of
the receiving device. If the logic
analyzer detects an error, it will
trigger and display a trace of the
faulty transmission. The trace data
can be evaluated to find the root
cause of the problem.

The ability to functionally test a
digital circuit at all development
stages makes the process go more
smoothly. By testing custom parts
separately or simulating missing
or faulty parts, you can debug the
available parts of your system
before the whole system is com-
plete. When all of the system hard-
ware comes together, you will
have already fixed many of the
problems and will be able to deliv-
er a working system in a shorter
time. Finally, by stimulating a
working system with a variety of
test sequences and fault condi-
tions, you can better verify that it
functions correctly. Functional
testing can help you meet product
schedules and beat time-to-market
pressures.

For additional information on
products mentioned in this article,
check 3 on the reply card, or visit
http://www.hp.com/info/insight3.

Figure 3. Instruments that combine

pattern generation with logic analysis

ease the process of functional testing.

DUT

